Computational/Applied Math Seminar

SPEAKER:  Prof. Jean-Luc Guermond, Texas A&M

TITLE:  Revisiting first-order viscosity for continuous finite element approximation of nonlinear conservation equations

ABSTRACT:  I will revisit the standard standard artificial viscosity based on the operator $-DIV(nu_hGRAD)$, where $nu_h$ is scalar-valued and proportional to some wave-speed and some mesh-size. Some key shortcomings of this formulation will be identified: i.e. what is the local wave-speed? what is the proportionality constant? what is the local mesh-size on anisotropic meshes? I will then construct a first-order viscosity method for the explicit approximation of scalar conservation equations using continuous finite elements on arbitrary grids in any space dimension that does not require any a priori knowledge of quantities

like local wave-speed, proportionality constant, mesh-size. Provided the approximation setting satisfies a local convexity assumption (ie piecewise linears, for instance) and the flux is $calC^1$, the method is proved to satisfy the local maximum principal under a usual CFL condition. The method is independent of

the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions without any particular regularity assumption. Higher-order extensions of the method will be discussed as well.


CAM seminar schedule:

Wednesday, 06 November, 2013


Phone: 974-2463

Ayres Hall

Room 122
1403 Circle Drive
Knoxville, TN 37996

See all events at this location

Contribute to big ideas. Give to UT.

The University of Tennessee, Knoxville. Big Orange. Big Ideas.

The University of Tennessee, Knoxville. Knoxville, Tennessee 37996 | 865-974-1000

The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.