Computational/Applied Math Seminar
SPEAKER: Prof. Shawn Walker, Louisiana State University
TITLE: A New Mixed Formulation For a Sharp Interface Model of Stokes Flow and Moving Contact Lines
ABSTRACT: Two phase fluid flows on substrates (i.e. wetting phenomena) are important in many industrial processes, such as micro-fluidics and coating flows. These flows include additional physical effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddle-point) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate.
The model is derived by an Onsager type principle using shape differential calculus (at the sharp-interface, front-tracking level) and allows for moving contact lines and contact angle hysteresis through a variational inequality. We prove the well-posedness of the time semi-discrete and fully discrete (finite element) model and discuss error estimates. Simulation movies will be presented to illustrate the method. We conclude with some discussion of a 3-D version of the problem as well as future work on optimal control of these types of flows.
Save this Event:
iCalendarGoogle Calendar
Yahoo! Calendar
Windows Live Calendar
Share this Event:
Email to a Friend
More...
















































