The University of Tennessee, Knoxville Logo



Algebra Seminar


SPEAKER: Prof. Giulio Peruginelli, UT
 
TITLE: About some new rings of integer-valued polynomials.
 
ABSTRACT: In this talk we will introduce some new rings of integer-valued polynomials introduced and studied recently by Loper, Frisch and Werner. Given a domain D with quotient field K and a
torsion-free D-algebra A (possibly with zero divisors and non-commutative) we consider polynomials in K[X] which map every element of A into A. The set of such polynomials forms a ring denoted by Int_K(A). If D is a residually finite ring and A is finitely generated as a D-module, we show that the integral closure of Int_K(A) is equal to another ring of integer-valued polynomials, namely those polynomials in K[X] which map the roots of the minimal polynomials of all the elements of A into elements which are integral over D (joint result with N. Werner). This result generalizes a result of Gilmer, Heinzer and Lantz for the integral closure of the classical ring Int(D), in the case that D is a residually finite domain. Finally, we will show an application of this result to polynomially dense subsets of the set of integral elements over a residually finite domain D whose degree over K is bounded.

Wednesday, 05 February, 2014


Contact:

Betty Morgan
Phone: 974-2463

Ayres Hall

Room B004
1403 Circle Drive
Knoxville, TN 37996
USA
See all events at this location

Contribute to big ideas. Give to UT.

The University of Tennessee, Knoxville. Big Orange. Big Ideas.

Knoxville, Tennessee 37996 | 865-974-1000
The flagship campus of the University of Tennessee System