Skip to main content

Absolute Blast

A UT grad student is one of only a few researchers worldwide exploring Mars in augmented reality.

A doctoral student in UT’s Department of Geology is one of only a few researchers worldwide doing test explorations of Mars with an augmented reality headset.

The HoloLens shows Rachel Kronyak the surface of Mars in a three-dimensional hologram. The images used to build the hologram are taken by Curiosity, the NASA rover that has been exploring the planet for the past five years.

NASA launched Curiosity in November 2011. When the rover landed on Mars in August 2012, UT Professor of Earth and Planetary Sciences Linda Kah joined the Curiosity mission.

Kronyak was the first student Kah brought onto the Mars rover science team in late 2014. Two other earth and planetary sciences professors—Jeff Moersch and Chris Fedo—also have roles on the mission.

The team plans the rover’s daily science operations and analyzes the data sent back to Earth.

In the early days of telescopes, Kronyak says astronomers were convinced that Mars contained extensive canal systems constructed by advanced, intelligent civilizations.

While NASA’s explorations have not uncovered such evidence, the understanding of Mars is advancing.

“With Curiosity in particular, we’ve found environments that, in the past, would have been suitable for microorganisms,” Kronyak explains. “And in the past two years or so, we’ve discovered that Gale Crater, Curiosity’s landing site, was likely an ancient lake.”

The rover’s findings suggest the lake’s existence goes back more than three billion years, and that it filled and dried in cycles over tens of millions of years.

Curiosity also gives NASA another advantage. “With advancing technologies in the past few decades, we’re able to increase our resolution of the Martian surface with each mission,” Kronyak says.

The robotic vehicle—about the size of a Mini Cooper—takes high-resolution images of nearby rocks and analyzes them to determine their chemical composition.

“With Curiosity and other Mars missions, we’re constantly learning new things about the evolution of Mars as a planet—how its surface, atmosphere, and environments have changed over geologic time, and how these lessons might be applied to our own planet,” Kronyak says.

She will include the data collected from the rover and HoloLens into her dissertation research. The discoveries will also inform NASA’s future explorations and research by other scientists.

HoloLens provides access to scientists and engineers looking to interact with Mars in a more natural, human way.

“We’re explorers scouting uncharted land, just like our ancestors,” Kronyak says. “The only difference is that we get to do it with a robot on Mars. In many ways, I feel like this is the closest I’ll get to being an astronaut and going to Mars, so it’s an absolute blast.”

Volunteer Stories